Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Sci Rep ; 12(1): 471, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013486

RESUMEN

R. esculentum is a popular seafood in Asian countries and an economic marine fishery resource in China. However, the genetic linkage map and growth-related molecular markers are still lacking, hindering marker assisted selection (MAS) for genetic improvement of R. esculentum. Therefore, we firstly used 2b-restriction site-associated DNA (2b-RAD) method to sequence 152 R. esculentum specimens and obtained 9100 single nucleotide polymorphism (SNP) markers. A 1456.34 cM linkage map was constructed using 2508 SNP markers with an average interval of 0.58 cM. Then, six quantitative trait loci (QTLs) for umbrella diameter and body weight were detected by QTL analysis based on the new linkage map. The six QTLs are located on four linkage groups (LGs), LG4, LG13, LG14 and LG15, explaining 9.4% to 13.4% of the phenotypic variation. Finally, 27 candidate genes in QTLs regions of LG 14 and 15 were found associated with growth and one gene named RE13670 (sushi, von Willebrand factor type A, EGF and pentraxin domain-containing protein 1-like) may play an important role in controlling the growth of R. esculentum. This study provides valuable information for investigating the growth mechanism and MAS breeding in R. esculentum.


Asunto(s)
Sitios de Carácter Cuantitativo , Escifozoos/crecimiento & desarrollo , Escifozoos/genética , Animales , Mapeo Cromosómico , Fenotipo , Polimorfismo de Nucleótido Simple , Escifozoos/clasificación
2.
Sci Rep ; 11(1): 18653, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34545165

RESUMEN

Ecologists and evolutionary biologists have been looking for the key(s) to the success of scyphomedusae through their long evolutionary history in multiple habitats. Their ability to generate young medusae (ephyrae) via two distinct reproductive strategies, strobilation or direct development from planula into ephyra without a polyp stage, has been a potential explanation. In addition to these reproductive modes, here we provide evidence of a third ephyral production which has been rarely observed and often confused with direct development from planula into ephyra. Planulae of Aurelia relicta Scorrano et al. 2017 and Cotylorhiza tuberculata (Macri 1778) settled and formed fully-grown polyps which transformed into ephyrae within several days. In distinction to monodisk strobilation, the basal polyp of indirect development was merely a non-tentaculate stalk that dissolved shortly after detachment of the ephyra. We provide a fully detailed description of this variant that increases reproductive plasticity within scyphozoan life cycles and is different than either true direct development or the monodisk strobilation. Our observations of this pattern in co-occurrence with mono- and polydisk strobilation in Aurelia spp. suggest that this reproductive mode may be crucial for the survival of some scyphozoan populations within the frame of a bet-hedging strategy and contribute to their long evolutionary success throughout the varied conditions of past and future oceans.


Asunto(s)
Océanos y Mares , Escifozoos/fisiología , Animales , Estadios del Ciclo de Vida , Reproducción/fisiología , Escifozoos/anatomía & histología , Escifozoos/crecimiento & desarrollo
3.
Ecotoxicol Environ Saf ; 208: 111665, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33396175

RESUMEN

Microplastics are ubiquitous in aquatic ecosystems, but little information is currently available on the dangers and risks to living organisms. In order to assess the ecotoxicity of environmental microplastics (MPs), samples were collected from the beaches of two islands in the Guadeloupe archipelago, Petit-Bourg (PB) located on the main island of Guadeloupe and Marie-Galante (MG) on the second island of the archipelago. These samples have a similar polymer composition with mainly polyethylene (PE) and polypropylene (PP). However, these two samples are very dissimilar with regard to their contamination profile and their toxicity. MPs from MG contain more lead, cadmium and organochlorine compounds while those from PB have higher levels of copper, zinc and hydrocarbons. The leachates of these two samples of MPs induced sublethal effects on the growth of sea urchins and on the pulsation frequency of jellyfish ephyrae but not on the development of zebrafish embryos. The toxic effects are much more marked for samples from the PB site than those from the MG site. This work demonstrates that MPs can contain high levels of potentially bioavailable toxic substances that may represent a significant ecotoxicological risk, particularly for the early life stages of aquatic animals.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Estadios del Ciclo de Vida/efectos de los fármacos , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Organismos Acuáticos/crecimiento & desarrollo , Ecosistema , Ecotoxicología , Islas , Microplásticos/química , Escifozoos/efectos de los fármacos , Escifozoos/crecimiento & desarrollo , Erizos de Mar/efectos de los fármacos , Erizos de Mar/crecimiento & desarrollo , Contaminantes Químicos del Agua/química
4.
mBio ; 11(6)2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203753

RESUMEN

All multicellular organisms are associated with microbial communities, ultimately forming a metaorganism. Several studies conducted on well-established model organisms point to immunological, metabolic, and behavioral benefits of the associated microbiota for the host. Consequently, a microbiome can influence the physiology of a host; moreover, microbial community shifts can affect host health and fitness. The present study aimed to evaluate the significance and functional role of the native microbiota for life cycle transitions and fitness of the cnidarian moon jellyfish Aurelia aurita A comprehensive host fitness experiment was conducted studying the polyp life stage and integrating 12 combinations of treatments with microbiota modification (sterile conditions, foreign food bacteria, and potential pathogens). Asexual reproduction, e.g., generation of daughter polyps, and the formation and release of ephyrae were highly affected in the absence of the native microbiota, ultimately resulting in a halt of strobilation and ephyra release. Assessment of further fitness traits showed that health, growth, and feeding rate were decreased in the absence and upon community changes of the native microbiota, e.g., when challenged with selected bacteria. Moreover, changes in microbial community patterns were detected by 16S rRNA amplicon sequencing during the course of the experiment. This demonstrated that six operational taxonomic units (OTUs) significantly correlated and explained up to 97% of fitness data variability, strongly supporting the association of impaired fitness with the absence/presence of specific bacteria. Conclusively, our study provides new insights into the importance and function of the microbiome for asexual reproduction, health, and fitness of the basal metazoan A. auritaIMPORTANCE All multicellular organisms are associated with a diverse and specific community of microorganisms; consequently, the microbiome is of fundamental importance for health and fitness of the multicellular host. However, studies on microbiome contribution to host fitness are in their infancy, in particular, for less well-established hosts such as the moon jellyfish Aurelia aurita Here, we studied the impact of the native microbiome on the asexual reproduction and on further fitness traits (health, growth, and feeding) of the basal metazoan due to induced changes in its microbiome. We observed significant impact on all fitness traits analyzed, in particular, in the absence of the protective microbial shield and when challenged with marine potentially pathogenic bacterial isolates. Notable is the identified crucial importance of the native microbiome for the generation of offspring, consequently affecting life cycle decisions. Thus, we conclude that the microbiome is essential for the maintenance of a healthy metaorganism.


Asunto(s)
Microbiota , Escifozoos/crecimiento & desarrollo , Escifozoos/microbiología , Animales , Estadios del Ciclo de Vida , ARN Ribosómico 16S/genética , Reproducción Asexuada , Escifozoos/genética , Escifozoos/fisiología
5.
Sci Rep ; 10(1): 6074, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32269239

RESUMEN

While Ocean modeling has made significant advances over the last decade, its complex biological component is still oversimplified. In particular, modeling organisms in the ocean system must integrate parameters to fit both physiological and ecological behaviors that are together very difficult to determine. Such difficulty occurs for modeling Pelagia noctiluca. This jellyfish has a high abundance in the Mediterranean Sea and could contribute to several biogeochemical processes. However, gelatinous zooplanktons remain poorly represented in biogeochemical models because uncertainties about their ecophysiology limit our understanding of their potential role and impact. To overcome this issue, we propose, for the first time, the use of the Statistical Model Checking Engine (SMCE), a probability-based computational framework that considers a set of parameters as a whole. Contrary to standard parameter inference techniques, SMCE identifies sets of parameters that fit both laboratory-culturing observations and in situ patterns while considering uncertainties. Doing so, we estimated the best parameter sets of the ecophysiological model that represents the jellyfish growth and degrowth in laboratory conditions as well as its size. Behind this application, SMCE remains a computational framework that supports the projection of a model with uncertainties in broader contexts such as biogeochemical processes to drive future studies.


Asunto(s)
Biomasa , Escifozoos/fisiología , Distribución Animal , Animales , Tamaño Corporal , Modelos Estadísticos , Escifozoos/crecimiento & desarrollo , Incertidumbre , Zooplancton/fisiología
6.
PLoS One ; 14(11): e0225513, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31751435

RESUMEN

Outbreaks of moon jellyfish Aurelia spp. are frequently reported from many parts of the world's coastal areas. Aurelia spp. canonically show a metagenetic life cycle in which planulae transform into sessile polyps, which can drastically increase in number through asexual reproduction. Therefore, their asexual reproduction has been recognized as one of the major causes of the outbreaks. Aurelia spp. also show direct development that lacks asexual reproduction during the polyp stage, which prevents us from understanding the mechanisms of its outbreaks. To clarify the seasonality of the metagenetic and direct-development life cycles of Aurelia sp. in Maizuru Bay, Japan, we conducted field observations and laboratory experiments throughout the year. Additionally, the two life cycle types were genetically analyzed to confirm that they belong to the single species Aurelia coerulea, which dominates in coastal waters in Japan. From July until October, Aurelia coerulea produced smaller eggs and planulae all of which developed into polyps. However, from December until May, larger eggs and planulae were produced and 90% of the planulae developed into planktonic ephyrae bypassing the sessile polyp stage. Our results demonstrated that a single species, A. coerulea, seasonally shifts between their two life cycle types at a water temperature threshold of 20°C in Maizuru Bay. The higher energy storage of larger planulae was suggested to enable the planulae to develop into ephyrae without external energy input through feeding during the polyp stage. The adaptive significances of the two life cycle types were also discussed.


Asunto(s)
Complejo IV de Transporte de Electrones/genética , Escifozoos/crecimiento & desarrollo , Análisis de Secuencia de ADN/métodos , Animales , Bahías , Evolución Molecular , Femenino , Japón , Estadios del Ciclo de Vida , Filogenia , Escifozoos/genética , Estaciones del Año
7.
PLoS One ; 13(8): e0202093, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30133536

RESUMEN

Jellyfish blooms are a significant environmental problem that is increasing and may be influenced by anthropocentric practices such as overfishing, pollution, eutrophication, translocation, climate change, and ocean acidification. Many jellyfish have unknown life cycles leading to these blooms. We describe for the first time, the life cycle of scyphozoan jellyfish Rhizostoma luteum from the planula to the young medusa stages, based on laboratory observations. We also provide a preliminary assessment of temperature related to life stages. Comparisons were made with early life history stages of its sibling species Rhizostoma pulmo and Rhizostoma octopus. The life cycle of R. luteum follows the general pattern of metagenesis of scyphozoans. Scyphistoma culture was maintained in filtered seawater at 17-17.5 °C, salinity 37 and light photoperiod (12:12 h light:dark). Scyphistomae were exposed to an experimental temperature descent for two days to test their survival capacity under severe winter conditions. Only one asexual reproduction mode was observed, which is employed for propagation, consisting of podocyst formation with excystment, subsequent development of scyphistoma, strobilation and liberation of viable ephyra. The development of the ephyra to metaephyra was photodocumented, reaching the metaephyra stage in approximately 21-25 days. Young medusae grow rapidly and maturity was reached after a 3-month post-liberation period with a mean bell diameter of 13.27 ± 2.26 cm and wet weight of 181.53 ± 53 g. The life cycle of R. luteum resembles that of its congeners, with the distinction that it has the unique features of being a brooding species (internal fertilisation with subsequent release of planulae) and under the conditions tested, the predominantly strobilation type observed was monodisc, and not polydisc as with the other two species in the genus Rhizostoma. As R. luteum shows sufficient requisite to form blooms if environmental circumstances change, it is important to understand its life cycle.


Asunto(s)
Estadios del Ciclo de Vida , Escifozoos/fisiología , Animales , Femenino , Reproducción Asexuada , Salinidad , Escifozoos/anatomía & histología , Escifozoos/crecimiento & desarrollo , Temperatura
8.
Sci Total Environ ; 626: 982-994, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29898563

RESUMEN

A prominent increase in the moon jellyfish (genus Aurelia) populations has been observed since 1980 in two semi-enclosed temperate seas: the northern Adriatic Sea and the Inland Sea of Japan. Therefore, we reviewed long-term environmental and biotic data from the two Long-Term Ecological Research (LTER) sites, along with the increase in the moon jellyfish occurrence to elucidate how these coastal seas shifted to the jellyfish-dominated ecosystems. The principal component analysis of atmospheric data revealed a simultaneous occurrence of similar climatic changes in the early 1980s; thereafter, air temperature increased steadily and precipitation decreased but became more extreme. Accordingly, the average seawater temperature from March to October, a period of polyps' asexual reproduction i.e. budding, increased, potentially leading to an increase in the reproductive rates of local polyp populations. Conspicuous eutrophication occurred due to the rise of anthropogenic activities in both areas from the 1960s onwards. This coincided with an increase of the stock size of forage fishes, such as anchovy and sardine, but not the population size of the jellyfish. However, by the end of the 1980s, when the eutrophication lessened due to the regulations of nutrients loads from the land, the productive fishing grounds of both systems turned into a state that may be described as 'jellyfish-permeated,' as manifested by a drastic decrease in fish landings and a prominent increase in the intensity and frequency of medusa blooms. A steady increase in artificial marine structures that provide substrate for newly settled polyps might further contribute to the enhancement of jellyfish population size. Elevated fishing pressure and/or predation by jellyfish on ichthyoplankton and zooplankton might jeopardize the recruitment of anchovy, so that the anchovy catch has never recovered fully. These semi-enclosed seas may represent many temperate coastal waters with increased anthropogenic stressors, which have degraded the ecosystem from fish-dominated to jellyfish-dominated.


Asunto(s)
Ecosistema , Monitoreo del Ambiente/métodos , Escifozoos/crecimiento & desarrollo , Animales , Eutrofización , Italia , Japón , Océanos y Mares , Crecimiento Demográfico , Agua de Mar/química , Temperatura , Contaminación del Agua/análisis , Contaminación del Agua/estadística & datos numéricos
9.
Mar Pollut Bull ; 129(1): 86-91, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29680572

RESUMEN

Blooms of the moon jellyfish Aurelia coerulea frequently occur in coastal waters. The increased availability of substrates for the settlement and proliferation of polyps due to the expansion of artificial structures in coastal areas has been proposed as a possible contributing factor in jellyfish blooms. This paper investigates whether a marine artificial lake (Fenghuang Lake) provides additional substrates for A. coerulea polyps and contributes to jellyfish blooms. High densities of A. coerulea ephyrae were discovered in this lake, with a mean density of 41 individuals/m3 and a maximum measured density of 128 individuals/m3. Meanwhile, A. coerulea ephyrae were also found in the two emptying channels outside the lake, with a mean density of 13 individuals/m3. Underwater surveys revealed that dense colonies of A. coerulea polyps occurred mainly on biogenic reefs formed by a polychaete, which was identified as an invasive serpulid species Hydroides dianthus, based on the phylogenetic analysis of mitochondrial COI gene sequences. Our study highlights the potential modification of habitats by the alien polychaete H. dianthus, which might provide complex benthic habits suitable for the settlement and proliferation of A. coerulea polyps and may contribute to jellyfish blooms in the marine artificial lake and nearby coastal waters.


Asunto(s)
Especies Introducidas/tendencias , Lagos/química , Estadios del Ciclo de Vida , Poliquetos/crecimiento & desarrollo , Escifozoos/crecimiento & desarrollo , Adaptación Fisiológica , Animales , China , Ecosistema , Monitoreo del Ambiente , Filogenia , Poliquetos/fisiología
10.
Mol Phylogenet Evol ; 124: 50-59, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29518561

RESUMEN

Loss or stark reduction of the free-swimming medusa or jellyfish stage is common in the cnidarian class Hydrozoa. In the hydrozoan clade Trachylina, however, many species do not possess a sessile polyp or hydroid stage. Trachylines inhabiting freshwater and coastal ecosystems (i.e., Limnomedusae) possess a metagenetic life cycle involving benthic, sessile polyp and free-swimming medusa. In contrast, the paradigm is that open ocean inhabiting, oceanic trachylines (in the orders Narcomedusae and Trachymedusae) develop from zygote to medusa via a free-swimming larva, forgoing the polyp stage. In some open-ocean trachylines, development includes a sessile stage that is an ecto- or endoparasite of other oceanic organisms. We expand the molecular-based phylogenetic hypothesis of trachylines significantly, increasing taxon and molecular marker sampling. Using this comprehensive phylogenetic hypothesis in conjunction with character state reconstructions we enhance understanding of the evolution of life cycles in trachyline hydrozoans. We find that the polyp stage was lost at least twice independently, concurrent with a transition to an oceanic life style. Further, a sessile, polypoid parasitic stage arose once, rather than twice as current classification would imply, in the open ocean inhabiting Narcomedusae. Our results also support the hypothesis that interstitial species of the order Actinulida are directly descended from direct developing, oceanic trachylines.


Asunto(s)
Evolución Biológica , Estadios del Ciclo de Vida , Océanos y Mares , Escifozoos/crecimiento & desarrollo , Escifozoos/fisiología , Animales , Larva/fisiología , Funciones de Verosimilitud , Parásitos/crecimiento & desarrollo , Filogenia , Probabilidad , Escifozoos/clasificación
11.
PLoS One ; 12(12): e0188601, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29281657

RESUMEN

Many animals go through one or more metamorphoses during their lives, however, the molecular underpinnings of metamorphosis across diverse species are not well understood. Medusozoa (Cnidaria) is a clade of animals with complex life cycles, these life cycles can include a polyp stage that metamorphoses into a medusa (jellyfish). Medusae are produced through a variety of different developmental mechanisms-in some species polyps bud medusae (Hydrozoa), in others medusae are formed through polyp fission (Scyphozoa), while in others medusae are formed through direct transformation of the polyp (Cubozoa). To better understand the molecular mechanisms that may coordinate these different forms of metamorphosis, we tested two compounds first identified to induce metamorphosis in the moon jellyfish Aurelia aurita (indomethacin and 5-methoxy-2-methylindole) on a broad diversity of medusozoan polyps. We discovered that indole-containing compounds trigger metamorphosis across a broad diversity of species. All tested discomedusan polyps metamorphosed in the presence of both compounds, including species representatives of several major lineages within the clade (Pelagiidae, Cyaneidae, both clades of Rhizostomeae). In a cubozoan, low levels of 5-methoxy-2-methylindole reliably induced complete and healthy metamorphosis. In contrast, neither compound induced medusa metamorphosis in a coronate scyphozoan, or medusa production in either hydrozoan tested. Our results support the hypothesis that metamorphosis is mediated by a conserved induction pathway within discomedusan scyphozoans, and possibly cubozoans. However, failure of these compounds to induce metamorphosis in a coronate suggests this induction mechanism may have been lost in this clade, or is convergent between Scyphozoa and Cubozoa.


Asunto(s)
Indoles/farmacología , Metamorfosis Biológica/efectos de los fármacos , Escifozoos/crecimiento & desarrollo , Animales , Especificidad de la Especie
12.
PLoS One ; 12(11): e0187476, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29095885

RESUMEN

Tenacibaculosis is an increasing problem in the Norwegian Atlantic salmon aquaculture industry causing significant economic losses. In September 2015, two separate outbreaks of suspected tenacibaculosis occurred at two Atlantic salmon farms in Finnmark County in Northern Norway. The events resulted in major losses of smolts newly transferred into seawater. Prior to, and during the outbreaks, large numbers of small jellyfish, identified as Dipleurosoma typicum (Boeck) were observed in the vicinity of the farms and inside the net-pens. This study investigates the possible link between the jellyfish, Tenacibaculum spp. and the tenacibaculosis outbreaks. Bacteriology, histology, scanning and transmission electron microscopy, and real-time RT-PCR screening were performed on both fish and jellyfish samples. Based on the findings, Tenacibaculum finnmarkense was found to be the dominant bacteria associated with the tenacibaculosis outbreaks at both sites and that D. typicum is unlikely to be a vector for this fish pathogenic bacterium. However, results do show that the jellyfish caused direct damage to the fish's skin and may have exacerbated the bacterial infection by allowing an entry point for bacteria.


Asunto(s)
Acuicultura , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/microbiología , Escifozoos/crecimiento & desarrollo , Animales , Brotes de Enfermedades/veterinaria , Enfermedades de los Peces/etiología , Noruega/epidemiología , Salmo salar
13.
PLoS One ; 12(8): e0182787, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28777817

RESUMEN

The moon jellyfish (Aurelia sp.1) is thought to be a nuisance for the sea cucumber aquaculture, which commonly occur in the sea cucumber (Apostichopus japonicus) culture ponds of the Yellow Sea, China. To develop an appropriate method to control Aurelia sp.1 blooms, the toxic effects of tea saponin on Aurelia sp.1 ephyrae and polyps were tested in laboratory experiments. Our results revealed that tea saponin caused significant morphological changes, behavioral abnormality and mortality in Aurelia sp.1 ephyrae and polyps in 24 h and 48 h exposure experiments. The 24 h and 48 h median lethal concentrations (LC50) values of tea saponin for Aurelia sp.1 ephyrae were 1.9 and 1.1 mg L-1 respectively, while the LC50 value for Aurelia sp.1 polyps was 0.4 mg L-1 after 24h and 48 h of exposure to tea saponin. Comparison with literature results of tea saponin on A. japonicus indicates that the resistance of A. japonicus to tea saponin is 12-18 times greater than that of Aurelia sp.1 ephyrae. Therefore, the appropriate tea saponin dosage for the control of Aurelia sp.1 should be paid enough attention in order to minimize possible damage for sea cucumber. We suggest that the recommended level of tea saponin to eradicate Aurelia sp.1 ephyrae and polyps in sea cucumber culture ponds be lower than 1.35 mg L-1.


Asunto(s)
Embrión no Mamífero/citología , Desarrollo Embrionario/efectos de los fármacos , Pólipos/mortalidad , Saponinas/toxicidad , Escifozoos/crecimiento & desarrollo , Té/toxicidad , Animales , Embrión no Mamífero/efectos de los fármacos , Pólipos/tratamiento farmacológico , Escifozoos/efectos de los fármacos
14.
PLoS One ; 12(6): e0178482, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28614409

RESUMEN

Polyps of two moon jellyfish species, Aurelia coerulea and A. relicta, from two Adriatic Sea coastal habitats were incubated under multiple combinations of temperature (14, 21°C), salinity (24, 37 ppt) and food regime (9.3, 18.6, 27.9 µg C ind-1 week-1) to comparatively assess how these factors may influence major asexual reproduction processes in the two species. Both species exhibited a shared pattern of budding mode (Directly Budded Polyps: DBP; Stolonal Budded Polyps: SBP), with DBP favoured under low food supply (9.3 µg C ind -1 week-1) and low temperature (14°C), and SBP dominant under high temperature (21°C). However, A. coerulea showed an overall higher productivity than A. relicta, in terms of budding and podocyst production rates. Further, A. coerulea exhibited a wide physiological plasticity across different temperatures and salinities as typical adaptation to ecological features of transitional coastal habitats. This may support the hypothesis that the invasion of A. coerulea across coastal habitats worldwide has been driven by shellfish aquaculture, with scyphistoma polyps and resting stages commonly found on bivalve shells. On the contrary, A. relicta appears to be strongly stenovalent, with cold, marine environmental optimal preferences (salinity 37 ppt, T ranging 14-19°C), corroborating the hypothesis of endemicity within the highly peculiar habitat of the Mljet lake. By exposing A. relicta polyps to slightly higher temperature (21°C), a previously unknown developmental mode was observed, by the sessile polyp regressing into a dispersive, temporarily unattached and tentacle-less, non-feeding stage. This may allow A. relicta polyps to escape climatic anomalies associated to warming of surface layers and deepening of isotherms, by moving into deeper, colder layers. Overall, investigations on species-specific eco-physiological and ontogenetic potentials of polyp stages may contribute to clarify the biogeographic distribution of jellyfish and the phylogenetic relationships among evolutionary related sister clades.


Asunto(s)
Adaptación Biológica , Reproducción Asexuada , Escifozoos/fisiología , Animales , Ecosistema , Ambiente , Océanos y Mares , Filogenia , Escifozoos/crecimiento & desarrollo , Temperatura
15.
Sci Rep ; 7(1): 1558, 2017 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-28484259

RESUMEN

Few studies have been published on the mechanisms of hypoxia response and tolerance in jellyfish, especially with respect to the regulatory mechanism at the molecular level. In this study, Aurelia sp.1, which is frequently found in Chinese coastal waters, was cultivated in a hypoxic system to determine the molecular mechanisms underlying its hypoxic response by studying the physiological activity, gene expression and metabolite contents in the prolyl hydroxylase domain (PHD)-hypoxia inducible factor (HIF) oxygen-sensing system. Physiological activity; the expression of PHD, HIF, ALDO (fructose-bisphosphate aldolase), PDK (pyruvate dehydrogenase kinase), and LDH (lactate dehydrogenase) genes; and the lactic acid content in medusae were significantly affected by hypoxia. The up-regulation of ALDO, PDK and LDH, which was directly or indirectly induced by HIF, mediated the transition from aerobic respiration to anaerobic glycolysis in the medusae. In polyps, there was a slight increase in the expression of HIF, PHD and ALDO, no obvious change in that of PDK and a slight decrease in that of LDH throughout the experiment; however, these changes were insufficient to induce the shift. This study provides a scientific basis for elucidating the regulatory mechanism underlying the PHD-HIF oxygen-sensing system in Aurelia sp.1.


Asunto(s)
Hipoxia/genética , Escifozoos/genética , Escifozoos/fisiología , Animales , Regulación de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Ácido Láctico/metabolismo , Estadios del Ciclo de Vida , Oxígeno/metabolismo , Escifozoos/crecimiento & desarrollo
16.
Biosci Biotechnol Biochem ; 81(5): 938-950, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28388360

RESUMEN

The life cycle of the moon jellyfish, Aurelia aurita, alternates between a benthic asexual polyp stage and a planktonic sexual medusa (jellyfish) stage. Transition from polyp to medusa is called strobilation. To investigate the molecular mechanisms of strobilation, we screened for genes that are upregulated during strobilation using the differential display method and we identified aspartylglucosaminidase (AGA), which encodes a lysosomal hydrolase. Similar to AGAs from other species, Aurelia AGA possessed an N-terminal signal peptide and potential N-glycosylation sites. The genomic region of Aurelia AGA was approximately 9.8 kb in length and contained 12 exons and 11 introns. Quantitative RT-PCR analysis revealed that AGA expression increased during strobilation, and was then decreased in medusae. To inhibit AGA function, we administered the lysosomal acidification inhibitors, chloroquine or bafilomycin A1, to animals during strobilation. Both inhibitors disturbed medusa morphogenesis at the oral end, suggesting involvement of lysosomal hydrolases in strobilation.


Asunto(s)
Aspartilglucosilaminasa/genética , Aspartilglucosilaminasa/metabolismo , Lisosomas/enzimología , Reproducción Asexuada , Escifozoos/enzimología , Escifozoos/fisiología , Regulación hacia Arriba , Secuencia de Aminoácidos , Animales , Aspartilglucosilaminasa/química , Secuencia de Bases , Clonación Molecular , Sitios Genéticos/genética , Morfogénesis , Escifozoos/genética , Escifozoos/crecimiento & desarrollo , Transcripción Genética
17.
Mol Phylogenet Evol ; 107: 232-238, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27845203

RESUMEN

Turritopsis dohrnii (Cnidaria, Hydrozoa, Hydroidolina, Anthoathecata) is the only known metazoan that is capable of reversing its life cycle via morph rejuvenation from the adult medusa stage to the juvenile polyp stage. Here, we present a complete mitochondrial (mt) genome sequence of T. dohrnii, which harbors genes for 13 proteins, two transfer RNAs, and two ribosomal RNAs. The T. dohrnii mt genome is characterized by typical features of species in the Hydroidolina subclass, such as a high A+T content (71.5%), reversed transcriptional orientation for the large rRNA subunit gene, and paucity of CGN codons. An incomplete complementary duplicate of the cox1 gene was found at the 5' end of the T. dohrnii mt chromosome, as were variable repeat regions flanking the chromosome. We identified species-specific variations (nad5, nad6, cob, and cox1 genes) and putative selective constraints (atp8, nad1, nad2, and nad5 genes) in the mt genes of T. dohrnii, and predicted alterations in tertiary structures of respiratory chain proteins (NADH4, NADH5, and COX1 proteins) of T. dohrnii. Based on comparative analyses of available hydrozoan mt genomes, we also determined the taxonomic relationships of T. dohrnii, recovering Filifera IV as a paraphyletic taxon, and assessed intraspecific diversity of various Hydrozoa species.


Asunto(s)
Evolución Biológica , Genoma Mitocondrial , Estadios del Ciclo de Vida/genética , Escifozoos/crecimiento & desarrollo , Escifozoos/genética , Animales , Secuencia de Bases , ADN Mitocondrial/genética , Genes Mitocondriales , Variación Genética , Nucleótidos/genética , Sistemas de Lectura Abierta/genética , Filogenia , ARN Ribosómico/genética
18.
Dev Genes Evol ; 226(6): 383-387, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27535146

RESUMEN

The moon jellyfish Aurelia exhibits a dramatic reorganization of tissue during its metamorphosis from planula larva to polyp. There are currently two competing hypotheses regarding the fate of embryonic germ layers during this metamorphosis. In one scenario, the original endoderm undergoes apoptosis and is replaced by a secondary endoderm derived from ectodermal cells. In the second scenario, both ectoderm and endoderm remain intact through development. In this study, we performed a pulse-chase experiment to trace the fate of larval ectodermal cells. We observed that prior to metamorphosis, ectodermal cells that proliferated early in larval development concentrate at the future oral end of the polyp. During metamorphosis, these cells migrate into the endoderm, extending all the way to the aboral portion of the gut. We therefore reject the hypothesis that larval endoderm remains intact during metamorphosis and provide additional support for the "secondary gastrulation" hypothesis. Aurelia appears to offer the first and only described case where a cnidarian derives its endoderm twice during normal development, adding to a growing body of evidence that germ layers can be dramatically reorganized in cnidarian life cycles.


Asunto(s)
Escifozoos/citología , Escifozoos/crecimiento & desarrollo , Animales , Movimiento Celular , Rastreo Celular , Femenino , Gastrulación , Larva/citología
19.
Mar Drugs ; 14(7)2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27399728

RESUMEN

There is a growing cause for concern on envenoming European species because of jellyfish blooms, climate change and globalization displacing species. Treatment of envenomation involves the prevention of further nematocyst release and relieving local and systemic symptoms. Many anecdotal treatments are available but species-specific first aid response is essential for effective treatment. However, species identification is difficult in most cases. There is evidence that oral analgesics, seawater, baking soda slurry and 42-45 °C hot water are effective against nematocyst inhibition and giving pain relief. The application of topical vinegar for 30 s is effective on stings of specific species. Treatments, which produce osmotic or pressure changes can exacerbate the initial sting and aggravate symptoms, common among many anecdotal treatments. Most available therapies are based on weak evidence and thus it is strongly recommended that randomized clinical trials are undertaken. We recommend a vital increase in directed research on the effect of environmental factors on envenoming mechanisms and to establish a species-specific treatment. Adequate signage on jellyfish stings and standardized first aid protocols with emphasis on protective equipment and avoidance of jellyfish to minimize cases should be implemented in areas at risk.


Asunto(s)
Escifozoos/efectos de los fármacos , Escifozoos/crecimiento & desarrollo , Animales , Mordeduras y Picaduras , Cambio Climático , Ambiente , Europa (Continente) , Nematocisto/efectos de los fármacos , Nematocisto/crecimiento & desarrollo , Especificidad de la Especie
20.
Toxicon ; 110: 74-8, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26718259

RESUMEN

The present work investigated the effects of the nematocysts venom (NV) from the Chrysaora helvola Brandt (C. helvola) jellyfish on the human nasopharyngeal carcinoma cell line, CNE-2. The medium lethal concentration (LC50), quantified by MTT assays, was 1.7 ± 0.53 µg/mL (n = 5). An atypical apoptosis-like cell death was confirmed by LDH release assay and Annexin V-FITC/PI staining-based flow cytometry. Interestingly, activation of caspase-4 other than caspase-3, -8, -9 and -1 was observed. Moreover, the NV stimuli caused a time-dependent loss of mitochondrial membrane potential (ΔΨm) as was an intracellular ROS burst. These results indicated that there was uncoupling of oxidative phosphorylation (UOP). An examination of the intracellular pH value by a pH-sensitive fluorescent probe, BCECF, suggested that the UOP was due to the time-dependent increase in the intracellular pH. This is the first report that jellyfish venom can induce UOP.


Asunto(s)
Antineoplásicos/farmacología , Venenos de Cnidarios/farmacología , Descubrimiento de Drogas , Neoplasias Nasofaríngeas/tratamiento farmacológico , Fosforilación Oxidativa/efectos de los fármacos , Escifozoos/química , Desacopladores/farmacología , Animales , Antineoplásicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Carcinoma/tratamiento farmacológico , Carcinoma/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , China , Venenos de Cnidarios/aislamiento & purificación , Humanos , Concentración de Iones de Hidrógeno , Cinética , Dosificación Letal Mediana , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neoplasias Nasofaríngeas/metabolismo , Nematocisto/química , Nematocisto/crecimiento & desarrollo , Océano Pacífico , Especies Reactivas de Oxígeno/agonistas , Especies Reactivas de Oxígeno/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Escifozoos/crecimiento & desarrollo , Desacopladores/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...